Sep 192011

Given that videogames are often demonized by research (and “research”) blaming them for everything from rudeness to the epidemic of youth violence, gamers often take a great deal of cheer from research attaching positive outcomes to videogame play. One such article that recently attracted some attention was work suggesting that playing videogames could correct amblyopia (often called “lazy eye”) in adults (1). Of course, given how negative results get oversold, it’s worth asking whether these have been, too. The paper appeared in the open-access journal PLoS Biology, so let’s open it up and take a look.

The fundamental problem that the authors are out to solve is that, while amblyopia can generally be corrected if it is treated in childhood, success tends to be rarer in adults. Knowing that video games have proven useful in improving adults’ abilities to perform a wide variety of visual tasks, these researchers decided to ask whether they could help treat amblyopia.

Figure 1 shows their experimental design. First they screened and assessed a group of adults with amblyopia. Then they divided these individuals into three groups. One group (10 individuals) played a total of 40 hours of Medal of Honor: Pacific Assault with the normal eye patched. An additional 3 individuals were assigned to a group that played SimCity Societies for an equal amount of time (it is unknown whether the author’s controlled for Societies‘ well-known liberal bias), again with the normal eye patched. The final seven individuals were given twenty hours of ordinary visual challenges (watching movies, reading, etc.) with the normal eye patched (occlusion therapy or OT), in order to ensure that patching alone wasn’t causing any observed improvements. Most individuals from the last two groups, following an intermediate assessment, then went on to play 40 hours of MOH.

As the authors note, there are several limitations to this study immediately apparent. The sample size was small, individuals were not assigned to groups randomly, and both participants and researchers knew what kind of treatment they were getting. This does not mean we should disregard the results. However, they do need to be taken with a grain of salt until the findings can be replicated in a larger sample.

And there is good cause to try to replicate these findings. Figure 2 is, unfortunately, something of a symbol party (the symbols and colors identify individual subjects by their type of amblyopia), so we’re better off focusing only on panel D, at lower right. The first item in panel D is a logMAR chart, used to measure visual acuity, and it probably looks familiar to you. Each line on the chart represents 0.1 logMAR units, and as you can see, the lower the score, the better your vision. The panel to the right of that shows the averaged data from all twenty individuals after OT and videogame therapy (VG). Here they are showing the percentage improvement in acuity in crowded conditions (the whole chart) or in isolation (a single letter). OT did not produce any improvement in acuity, while 40 hours of VG therapy produced an average 30% improvement in acuity. The other two graphs here indicate that improvement in acuity was unrelated to baseline acuity, and that the crowding index (the loss of acuity due to the presence of other letters) did not change substantially due to therapy.

This is a critical figure because, as the authors state, “reduced visual acuity is the sine qua non of amblyopia.” Substantial improvements in acuity, therefore, represent a major goal of therapy. Perceptual learning, in which participants make subtle visual judgments using their amblyopic eye, has been shown to improve acuity in adult amblyopes as well. If videogames can produce a comparable improvement, however, they may prove just as efficacious because they encourage therapy (=play) through fun.

Panels A-C of Figure 2 show the raw results and percentage improvements for each individual group. Two additional points are worth noting. Panel B shows that the 20h of occlusion therapy were ineffective, but the subsequent 40h of MOH improved acuity in all continuing individuals. However, it should be noted that while the gaming took place at the research location, the occlusion therapy was done on the individual’s own time and self-reported. This study therefore does not control for the benefits of a monitored and enforced eye-exercise regimen.

Panel C is also of interest. Although the group here is small (and the data correspondingly noisy), it appears that their acuity was improved by both SimCity and MOH. This was somewhat unexpected, because in the past positive visual effects produced by action video games have not been replicated by non-action games. Understanding why that’s not the case here may help provide some additional insights into the mechanisms by which games improve acuity in these patients. I haven’t played SimCity Societies, but having played previous SimCity iterations I know that these games often require the player to integrate a variety of visual information (traffic flow, electricity, dynamic economies) simultaneously, which may underlie the observation. Had these subjects actually played videogame chess, their improvement might have been less.

The authors went on to test the subjects’ vision in various ways. Figure 3 shows a test of positional acuity, and is rather badly made, but gets the point across that positional acuity (assessed using the funky little chart in panel A) improved in the game-playing group (panel B). This included both increases in “sampling efficiency”, related to a fitted number of correct positions extracted (out of 8) (panel C and E-SB2) and decreases in “internal noise”, or the degree to which the individual’s own eyes interfere with his assessment of position (panel D and E – SA5). The results in panel E compare improvements in efficiency and internal noise, with the three labeled graphs comparing results in the non-amblyopic eye (NAE) to the amblyopic eye (AE) before and after videogame treatment.

The authors also decided to test the effect of the games on spatial attention, as they report in Figure 4, by briefly showing the subjects a field of dots (at a size where they could be easily seen), followed by a checkerboard pattern and asking them to report the number of dots seen (panel A). Not all the individuals had an appreciable difference between the non-amblyopic eye and the amblyopic eye prior to the VG treatment (panel B). However, the degree of improvement in spatial attention tended to be greater the worse the initial condition was (panel C), including for SimCity players (symbols surrounded by dotted circles). For the worst-off subjects (dotted circle in panel B), significant improvements in accuracy and response time were observed (panel D-F).

Finally, the authors tested the stereovision of some subjects using a standard test (Figure 5). Again, substantial improvements were noted in all those tested (which excluded subjects with strabismus), to the degree that some of them were effectively cured.

These results show that playing video games produced dramatic improvements in vision for adults with amblyopia by a variety of measures. However, this study had many limitations, and nobody should go around prescribing (or self-prescribing) videogames as amblyopia therapy just yet. The sample size here was very small, and because of the way groups were assigned the various populations differed in non-trivial ways (the MOH group, for instance, was younger and more male than the others). The conditions for occlusion therapy were very different from those used in the videogame therapy, which could have contributed to the different outcomes. Even if a more comprehensive trial shows similar results, more work will be necessary to identify the best course of treatment, which I note is unlikely to take the form of a 24-hour Modern Warfare 3 binge fueled by Bawls and pizza.

That said, these results appear to justify a larger, more complete study, which we can certainly hope to see in a few years from these authors.

1) Li, R., Ngo, C., Nguyen, J., & Levi, D. (2011). Video-Game Play Induces Plasticity in the Visual System of Adults with Amblyopia PLoS Biology, 9 (8) DOI: 10.1371/journal.pbio.1001135

Apr 122011

ResearchBlogging.orgThe classic neuropathological hallmarks of Alzheimer’s disease are the appearance of amyloid plaques composed primarily of amyloid beta (Aβ) peptides, and neurofibrillary tangles composed mainly of hyperphosphorylated tau protein. For many years, research into treatments for Alzheimer’s disease proceeded on the hypothesis that the plaques were toxic to the surrounding neurons. More recently, however, evidence has shown that soluble Aβ oligomers may be the primary toxic species. A recent paper in Proceedings of the National Academy of Sciences supports this hypothesis by showing that Aβ oligomers isolated from the brains of Alzheimer’s sufferers cause neuronal degradation and improper phosphorylation of tau (1). This paper is open access, so open it upand read along.

Jin et al. isolated dimers of Aβ from homogenates of human brains from Alzheimer’s patients. Dimers were separated from monomers and higher-order oligomers by size-exclusion chromatography in the presence of a strong detergent that typically breaks up folded proteins and repeating aggregates. This separates the dimers and higher oligomers from each other, and also dissociated weakly-interacting peptides (due to the effects of the detergent). As you can see from Fig. 1A, this produced fractions that contained either detergent-stable Aβ dimers (AD-TBS) or normal cortical proteins (cont-TBS) in identical solution conditions. They also created synthetic dimers by mutating Aβ to contain a cysteine that could form a covalent linkage between peptides (Aβ40S26C). They then used these various materials to treat primary cultures of neurons (that is, neurons that were obtained by directly harvesting them from an animal), with the dimers reaching a final concentration 0.5 nM in the growth medium.

Fig 1B establishes that, among the materials studied here, Aβ dimers are uniquely responsible for the appearance of tau “beads” along the neurites of the cultured cells after 3 days (the widespread dots in the final column of images). This effect is quantified in 1C, which shows that the dimer-containing fractions produced a dramatic increase in this clumping. According to the authors, these easily-visible clumps are only one symptom of widespread problems with the cells’ cytoskeletons. This sort of cytoskeletal trouble is expected because tau’s function is to stabilize and assist in the formation of microtubules from tubulin. The upshot of this figure is that continuous exposure to Aβ dimers (Fig 1D establishes that the dimers persist through the treatment period) appears to cause some sort of trouble with tau, which may reflect the incipient formation of the famous tangles.

The natural follow-up question is whether tau is necessary for this cytoskeletal derangement. The fact that the cultured neurons must mature, with a correlated increase in tau expression, for Aβ dimers to have an effect suggests that it must be. To check this, the authors used RNA inhibition to knock down tau levels. Fig 2A demonstrates that tau, but not tubulin, expression was altered using the tau-specific RNAi (but not the scrambled cont-RNAi). The cytoskeletal damage caused by both the natural dimer and the Aβ40S26C synthetic dimer were suppressed by tau-RNAi (Fig. 2B). At least at this timescale, it therefore appears that normal tau expression levels are necessary for this toxic effect of Aβ dimers. However, as tau in neurofibrillary tangles never breaks down, it seems like a longer exposure to Aβ under these conditions should produce similar toxic effects eventually.

The complementary experiment, is shown in Fig. 3, using a hybrid construct where human tau was fused to a fluorescent protein. As you can see from these images, under control conditions (columns labeled EGFP), cells treated with Aβ monomers and dimers have only subtle differences after two days, and beading is only evident after three days of treatment. When tau is overexpressed (columns labeled tau-EYFP), the cytoskeletal issues are obvious a day earlier. The tau-EYFP appears to be distributed in the same places as normal tau (fourth row), so the EYFP tag probably isn’t responsible for this effect, and the normal behavior of monomer-treated cells is reassuring. However, the EYFP tag may make tau more susceptible to some kind of dysregulation. Because this experiment both increases the total amount of tau and introduces the human protein, the reason for the enhanced susceptibility is difficult to determine. A control experiment in which rat tau-EYFP was expressed in the same construct would have been very helpful in clarifying this point.

As I mentioned above the formation of the tangles is associated with tau becoming highly phosphorylated. Jin et al. therefore made an effort to confirm that this was happening in their cultured cells, using antibodies that would recognize some specific sites in the tau protein that receive phosphate tags. Fig. 4 summarizes the results, indicating that human tau expressed in rat neurons becomes highly phosphorylated at serines 202, 205, and 262. For some reason, the endogenous rat tau did not become significantly phosphorylated at S262; this may have something to do with the apparently enhanced toxicity of Aβ dimers in the presence of human tau.

The paper’s final figure tests whether antibodies directed against specific sites in Aβ can prevent the observed cytoskeletal degradation. They found that two antibodies that bound to the N-terminus of Aβ significantly suppressed the effect of the dimers over the three-day timespan (fourth and fifth columns of A). However, an antibody directed towards the C-terminus of Aβ42 did not have much effect. Fig. 5C suggests that this is because this antibody simply didn’t bind to much of the Aβ in solution, either because most of the isoforms are shorter or because the C-terminus is protected in some way.

These results clearly link cytoskeletal disruptions caused by tau to the presence of soluble Aβ dimers, linking the two well-known pathological hallmarks of Alzheimer’s disease. That soluble oligomers, rather than fibrils, were responsible for the effect does not necessarily prove that the plaques aren’t important, for two reasons. The first is that, while these results clearly demonstrate dysregulation and aggregation of tau, true neurofibrillary tangles did not appear, and until we can assemble a full chain of events leading from beads to tangles the case, though strong, is still unproven. Secondly, as I’ve discussed previously, research has shown that the plaques can release soluble oligomers into the surrounding neural tissue and will therefore serve as reservoirs of toxic protein even if the fibrils themselves are completely inert.

That Aβ dimers can derange tau regulation in cultured neurons is not a new finding; similar results were reported last year using synthetic dimers (2). Zempel et al.‘s experiments used Aβ concentrations up to 5 μM, but Jin et al. show that naturally-obtained dimers have toxic effects at much, much lower concentrations. As the Zempel et al. paper suggests (consistent with much previous work), dysregulation of calcium levels caused by Aβ oligomers may be how they cause these effects. It is not presently clear why natural oligomers should be four orders of magnitude more potent than the various kinds of synthetic dimers at causing the effect; an understanding of this difference may be crucial in developing a suite of effective treatments for the disease.

1) Jin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D., & Selkoe, D. (2011). Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1017033108 OPEN ACCESS

2) Zempel, H., Thies, E., Mandelkow, E., & Mandelkow, E. (2010). Aβ Oligomers Cause Localized Ca2+ Elevation, Missorting of Endogenous Tau into Dendrites, Tau Phosphorylation, and Destruction of Microtubules and Spines. Journal of Neuroscience, 30 (36), 11938-11950 DOI: 10.1523/JNEUROSCI.2357-10.2010

Mar 172009
ResearchBlogging.orgThe observation of plaques composed primarily of amyloid-β (Aβ) peptides in the brains of Alzheimer’s patients long ago gave rise to a hypothesis that Aβ was the agent that caused the disease. The plaques themselves, composed of long, insoluble fibrils of Aβ, were believed to cause the synapse loss and nerve death characteristic of the disease, and some data supports this model. However, several experiments have suggested an alternative possibility: that the symptoms of Alzheimer’s may be attributed to soluble Aβ oligomers. In this view the fibrillar deposits may be an incidental feature of Alzheimer’s disease, or even a defense mechanism whereby the body tries to get rid of the oligomers by forcing them into insoluble aggregates. In the March 10 edition of PNAS, a team led by researchers at Massachusetts General Hospital claim to have reconciled these two models. Using fluorescence microscopy, they find that amyloid plaques are surrounded by a “halo” of Aβ oligomers that kill the surrounding synapses.

The authors of this studied used fluorescence labeling to identify plaques, oligomers, and synapses in thinly-sliced tissue sections and living brains. They performed their experiments in mice that had been genetically manipulated so as to develop amyloid plaques. When they examined the brains of live mice, Koffie et al. noticed that the fibrillar plaques were surrounded by a cloud of the oligomers, as you can see for yourself in the figure below. On the left you can see the plaque core labeled by a fluorescent dye, and the middle image shows fluorescence associated with an antibody that specifically binds to amyloid oligomers. When these images are merged, the diffuse “halo” of oligomers becomes obvious. The authors see a similar result when they perform a similar experiment using thin slices of brains.

The authors also used a fluorescent-conjugated antibody to identify elements of the post-synaptic density (PSD), so that they can identify healthy synapses in the brain. Experiments in tissue sections demonstrated that the number of healthy synapses was reduced not only right next to the plaque, but also in a region extending up to 50 µm away (a length comparable to the diameter of a human hair). Aβ oligomers are also enriched in this region, and the relative concentration of the oligomer roughly correlates with the loss of synapses. By comparing the pattern of Aβ fluorescence to that of the PSD, the authors determined that oligomers were associated with many synapses, and that interactions between PSD and Aβ oligomers resulted in decreased synapse size. The relationship between Aβ binding and reduced synapse size was also shown to hold in control mice expressing normal levels of native amyloid precursor protein.

The observation that the presence of Aβ oligomers correlates with synapse loss, and the apparent degradation of synapses by Aβ, indicates that the soluble oligomers are a significant cause of Alzheimer’s symptoms, although this study does not rule out the possibility that the plaque itself is also toxic. Even if the plaques have no immediate toxic effect, the authors propose that they serve as reservoirs, releasing synaptotoxic Aβ oligomers into the surrounding neural tissue, increasing the size of the lesions beyond the extent of the plaque itself. In this way Koffie et al. believe they have reconciled the previous models — oligomers are directly toxic, plaques release toxic oligomers, so both can serve as causative agents in Alzheimer’s disease.

If this model is accurate, it implies that Alzheimer’s disease may be quite resilient to attack. Antibodies or drugs that break up the Aβ oligomers will be effective in mitigating the synaptic damage, but as long as the plaques persist they will continue to replenish the pool of oligomers. Treatments that successfully break up the plaques will probably result in worsening symptoms due to the release of toxic oligomers as the fibrils disintegrate. These possibilities reinforce the idea that the most treatment for Alzheimer’s will involve reducing the concentration of amyloidogenic Aβ peptides to prevent them from forming plaques in the first place.

(1) Koffie, R., Meyer-Luehmann, M., Hashimoto, T., Adams, K., Mielke, M., Garcia-Alloza, M., Micheva, K., Smith, S., Kim, M., Lee, V., Hyman, B., & Spires-Jones, T. (2009). Oligomeric amyloid associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques Proceedings of the National Academy of Sciences, 106 (10), 4012-4017 DOI: 10.1073/pnas.0811698106

Aug 142008
ResearchBlogging.orgHow does the human brain react to the communication of emotion? Does the observation or imagination of emotions have anything in common with the personal experience of them? It is possible that the brain uses a setup in which seeing a person experience an emotion, imagining that emotion, and feeling that same emotion all use completely independent circuitry. Yet since all of these experiences make references to the same emotional state, it is also reasonable to think that some of the pathways are shared. In a recent article from PLoS ONE, a team of researchers uses functional Magnetic Resonance Imaging (fMRI) to determine similarities and differences in the patterns of brain activation following various means of communicating disgust. PLoS ONE is open access, so go ahead and open the article up in another window.

First, a word about fMRI, for those unfamiliar with it. As the name would suggest, fMRI is an elaboration of the standard MRI techniques used image the interior of your body without the use of potentially harmful radioactivity. Neuronal activity in the brain causes a local depletion of oxygen from the blood, followed by a localized increase in blood flow. Because the magnetic properties of iron in the blood change with its oxygenation state, it is possible to detect these hemodynamics using magnetic resonance imaging. Thus, fMRI is able to indirectly detect neural activity, although the fMRI signal lags behind activity by a few seconds. A given fMRI signal also encompasses a large number of individual neurons and therefore can only serve as a rough map to where things are happening in the brain. These temporal and spatial limitations limit the conclusions that can be drawn reliably from fMRI, but the observed correlations can provide valuable insights.

Jabbi et al. used fMRI to map the neural response of subjects to various encounters with disgust. Previous research had shown that a particular region of the brain (the IFO) showed increased activity when subjects either tasted something disgusting, or viewed a short clip of someone else tasting something disgusting. For this study, Jabbi et al. had participants read short scripts (samples can be found in the supplementary materials) intended to make the reader imagine being disgusted, pleased, or not feeling anything. They found that reading disgusting passages induced a neural response in this region of interest, just as it had for the cases of tasting or observing disgust.

While this may seem completely unsurprising, it bears some consideration. The experience of personal disgust differs significantly from the experience of observing disgust in others. Similarly, imagining or reading about disgust creates a very different subjective experience than, say, drinking quinine. Given that these are all quite different feelings, it is somewhat surprising that a single area is activated by all three.

Of course, there is a fine line to consider here — the passages meant to make the subjects imagine disgust may have actually disgusted them. The paragraphs that the authors make available in the supplementary materials are written in second person and involve things like accidentally ingesting animal waste. Because the subjects are reading passages that ask them to imagine themselves being disgusted, and the passages are themselves disgusting, the act of imagination may be contaminated by an immediate personal experience of disgust. In a more elaborate experiment it might be of value to use passages written in the third person. Additionally, it might be useful to employ passages in which the characters, because of particular phobias or personal experiences, are disgusted by items or actions the reader is likely to find innocuous.

Whether the readers where themselves disgusted or not, the overall response in the brain differed for each of the stimuli, as shown by a map of correlated activity (Figure 2). While the area outside the IFO activated by observation was relatively small, both the disgusting taste and the disgusting scripts produced widespread activity relative to a neutral taste or script. In general there was not much overlap between the networks, except for a small region shared by the imagination and experience groups. The authors propose that the similarities of imagining, observing, and experiencing emotion are due to the common activation of the IFO, while the differences between these are due to the largely distinct networks of correlated activity. Different modes of exposure to disgust may therefore act in complementary, rather than independent, ways.

Additionally, this result appears to be consistent with the view that our recognition of observed disgust and our imagination of disgust rely on an internal simulation of our own feelings of disgust. However, these experiments cannot establish exactly what a particular region of the brain is doing, so this remains an open question.

While this research does not indicate whether these results can be generalized to other emotional states, this finding may interest developers of media that make use of multiple modes of communication, specifically video games. Games often rely on video cutscenes to convey story and emotion, but this approach may be wasting a significant amount of potential. The participatory nature of games makes it possible to approach emotional communication not only through the observational route, but also the experiential route.

Consider the case of Agro’s fall in Shadow of the Colossus. Observing the cutscene, and hearing the voice of Wander, the player can understand that Wander feels grief at this event, in much the same way that anyone watching a movie could understand it. Additionally, the emptiness of the game’s landscape and the forced collaboration between the player and the Agro AI has helped to create a relationship between the player and the horse. Thus, in observing Agro’s fall, the player may feel his own sense of grief at the event, increasing the emotional resonance of the moment.

This suggests a possible, if lengthy, experiment. It would be interesting to compare the fMRI profile of a subjects observing Agro’s fall under two conditions: one in which they have actually played the game up to that point, and another in which they have watched the game as a movie, with exploration and battles recorded previously from an expert player’s run. Would the first group have activity in both the observational and experiential networks, or would each group activate a different network? What implications might these outcomes have for the development of emotionally fulfilling games?

Of course fMRI studies are not some holy grail that makes everything clear. The work of Jabbi et al. has given us a rough map to where things are happening, but understanding exactly what is happening and how it is happening will require additional experiments and possibly new investigative techniques. Nonetheless, this is an interesting piece of the puzzle, and perhaps some food for thought.

Mbemba Jabbi, Jojanneke Bastiaansen, Christian Keysers (2008). A Common Anterior Insula Representation of Disgust Observation, Experience and Imagination Shows Divergent Functional Connectivity Pathways PLoS ONE, 3 (8) DOI: 10.1371/journal.pone.0002939