Jun 042012

Allosteric regulation of proteins is often examined using two different models. The widely-known “induced-fit” (IF) model proposes that effectors form a loose complex with inactive proteins and cause them to shift into a new, active conformation. In the competing “conformational selection” model, effectors bind to and stabilize proteins that are already in an active conformation. An upcoming paper in the Journal of the American Chemical Society examines this question in the case of T. lanuginosis lipase (TLL) (1). The data show that the enzyme enters an activated state even when it is prevented from interacting with its activator. While this strongly suggests that the activation mechanism is CS, some data suggest that the mechanism is actually IF.

The paper in question relies on single-molecule kinetics techniques to characterize an enzyme. Previous studies in this field have shown that reaction time varies between enzyme molecules and over time for single molecules. These findings should not surprise us, knowing as we do that all machines have intrinsic variation in their rates of operation. Flexible proteins that can adopt many different folded structures (not to mention partially-folded and unfolded ones) should be expected to have even more operational differences. That said, there are a variety of ways to account for the observed distribution of reaction rates.

TLL is activated by lipid membranes. While tracking the activity of individual enzymes using fluorescence, Hatzakis et al. altered their ability to access a lipid membrane by changing the concentration of polyethylene glycol (PEG) in the solution; PEG blocks the (tethered) enzyme from accessing the liposome. They found that a model where the enzyme exists in an equilibrium of active (R) and inactive (T) states is most consistent with the distribution of reaction times they observe, even at PEG levels that completely occlude the membrane. Based on this finding, they conclude that TLL activation occurs by selection of an active conformation from a pre-existing equilibrium, rather than inducing a new conformation.

At this point things start to get a little confusing. The central problem is that CS and IF are used to identify both characteristics of the apo- ensemble and features of the activation pathway, and the former don’t necessarily coincide with the latter.

To understand what I mean, take a look at the figure below. Here, Ta and Ra are ligand-free T and R states, while Tb and Rb are ligand-bound T and R states. The typical ligand-free state is Ta, and the allosterically activated state is Rb. Ra (apo-R state) and TbL (“encounter complex”) are thermodynamic states that are viewed as characteristic of CS (red path) and IF (blue path), respectively. The rates kact and kin are the apparent rates of activation and inactivation, which are dependent on the microscopic rates noted for each pathway.

Comparison of CS and IF mechanisms

In a CS mechanism, the protein adopts both the R and T structures while free in solution, and ligand binds preferentially to the R state and stabilizes it, redistributing this pre-existing equilibrium without creating “new” states. Because binding follows conformational change, a pre-existing equilibrium in the apo- ensemble is a necessary condition of CS.

In the IF case, binding precedes conformational change: the ligand encounters the free T structure and allows it to adopt a “new” R structure. Traditionally, this has been interpreted to mean that the R structure never exists in solution at all. However, binding may proceed by an induced-fit mechanism even if an R state is populated in solution.

There are a couple of cases where we know this must happen. For instance, adenylate kinase, a protein that I have discussed before, undergoes conformational exchange between open (T) and closed (R) states in solution. However, in the closed state the ligand-binding site is completely occluded, and it is impossible for ligands to bind to this state. It therefore follows that binding-associated conformational change proceeds by an IF-like pathway, even though an equilibrium between the R and T structures exists in the apo- state. In this and similar cases, all four major states are populated, but kon,R≈0 and so the path through TbL dominates the reaction flux.

The thermodynamic implication of CS — that there is a detectable equilibrium between R and T states — is not synonymous with its mechanistic meaning — that conformational change precedes binding. This makes sense, because in the context of a constantly interconverting ensemble of conformations, even very unfavorable Ra states will be accessed occasionally. The strict thermodynamic definition of IF, that the R conformation be unattainable in the apo- state, may not apply to any real protein (2). However, the population of R conformers may be so low and short-lived as to be undetectable.

Even though a pre-existing equilibrium is not probative, a quick examination of the figure above indicates how we can distinguish between these mechanisms. In the case of CS, the rate of interconversion between T and R states in solution sets an upper limit on the activation rate, because the ligand binds to the apo-R state. At high ligand concentrations, kact = kTR because the presence of ligand probably will not alter the energy landscape of a protein it is not bound to. In this mechanism, however, koff,R is expected to be much slower than kRT. This implies that kin should decrease significantly at high ligand concentrations.

In an IF mechanism, the energy landscape of the encounter complex need not be the same as that of the apo- protein. As such, in IF activation the T→R energy barrier can (and is expected to) become lower. Accordingly, if kact exceeds kTR at high ligand concentrations (3), then an IF mechanism must be at work. Because this energy barrier is variable in an IF mechanism, however, it’s somewhat difficult to predict what will happen with the R→T barrier; it might get larger, or it might not. The figure below summarizes the expectations.

Hatzakis et al. report that the rate of conversion from T to R (i.e. kact) increases as PEG concentration decreases (note: in the advance online version the schemes in Figures 2 and 4 are mislabeled, but the energy diagram in 4 is accurate). The kin rate, by contrast, remains constant. If we accept their (reasonable) assumption that the energy of Ta is not affected by the lipid membrane, this indicates that the T→R energy barrier decreases in the presence of the allosteric effector. That, in turn, implies that the membrane is associated with the protein prior to the transition state, and thus that the mechanism of activation is induced fit, even though an Ra state can be observed in solution.

“Conformational selection” is often used interchangeably with “pre-existing equilibrium”, but it is dangerous to employ this equivalence. The thermodynamic feature of a pre-existing equilibrium between apo -inactive and -active states does not necessarily imply that the pathway between apo-inactive and bound-active states proceeds through an apo-active intermediate. In some cases, the observed equilibrium indicates a kinetic dead-end where kon,R≈0 and the reaction flux is dominated by IF mechanisms.

Hatzakis et al. studied the single-molecule kinetics of several other allosterically-regulated monomeric enzymes and found that they also showed evidence of a pre-existing equilibrium between active and inactive states. This alone, however, is not sufficient to establish activation via CS. Only a detailed examination of the kinetics can indicate whether activation uses CS, IF, or some combination of these mechanisms.

1) Hatzakis, N., Wei, L., Jorgensen, S., Kunding, A., Bolinger, P., Ehrlich, N., Makarov, I., Skjot, M., Svendsen, A., Hedegård, P., & Stamou, D. (2012). Single Enzyme Studies Reveal the Existence of Discrete Functional States for Monomeric Enzymes and How They Are “Selected” upon Allosteric Regulation Journal of the American Chemical Society DOI: 10.1021/ja3011429

2) By the same token, apo-R states are almost certainly not exactly the same as bound-R states, so a strict version of CS is also quite improbable.

3) At substoichiometric concentrations of ligand, kact can exceed kTR because in this condition maximum activation can be reached by (rapid) binding of ligand to the existing pool of Ra, without any need to replenish Ra from Ta.

Sorry, the comment form is closed at this time.